
6/10
Cut router table 2 x 4s-

-

6/11
Assembled router table 2 x 4 frame-

6/12
Reduced table height by 4 inches and added side panels-

Cut top work surface-

6/13
Installed top, bottom, and back panels-

Added wheels-

First 2 coats of paint-

6/14
Last 2 coats of paint on router table-

6/15
Completed first iteration of game design

Initial CAD design of game○

First iteration of rules and point system○

-

Daily Log
Sunday, June 16, 2024 7:25 PM

   Log Page 1    



-

6/16
Created schematic for DRV8320 with parts selected from JLCPCB-

6/17
~ 4 hours-

Finished first rev of schematic-

Finished first revision of the board layout with both manual and automatic inputs-

6/18 
~ 7 hours-

Added doors to the router table-

Assembled the router-

Added PCB connectors and started looking at JLCPCB assembly requirements-

   Log Page 2    



6/19 
~ 4 hours-

CAM day 8 CADvent for the first router test-

Finished the first revision of the motor controller PCB-

   Log Page 3    



Finished the first revision of the motor controller PCB

6/20
~ 5 hours-

Fixed PCB based off of visual inspection and JLCPCB DFM tool-

Submitted motor controller PCB to JLCPCB-

Brainstorming robot designs for game-

Arm geometry sketch-

   Log Page 4    



6/21
~ 3 hours
Constructed an abstract robot based off of the geometry sketches-

   Log Page 5    



6/22
~ 5 hours-

Designed wheel and planetary gearbox for swerve modules-

   Log Page 6    



6/24
~ 7 hours-

Designed side supports, bearings, and sliprings, along with many minor alterations-

   Log Page 7    



6/25
~ 7 hours-

Added detail to sliprings and created the slipring brushes-

Created GT2 belt assembly-

The motor controller board arrived-

   Log Page 8    



The motor controller board arrived

6/26
~ 4 hours-

Built the swerve platform and cover-

Made adjustments to the GT2 pulley and slipring tolerances-

   Log Page 9    



Made adjustments to the GT2 pulley and slipring tolerances

6/27
~ 4 hours-

Manually crimping JST connectors with needle nose pliers to test motor controllers-

Constructed the sliprings-

Wrote Arduino code for motor controller testing-

Created the corner of the frame-

6/28
~ 3 hours-

Made minute changes to the top slipring cap, the slipring brushes, and a few other changes to the swerve modules-

Began testing the motor controllers, unfortunately no luck-

6/29
~ 3 hours-

Continued to debug the motor controller
After reviewing the schematic we found that the DVDD pin had been connected to the connector pin instead of ENABLE. ○

After spending a few hours we managed to connect a wire to the ENABLE pin and connected it back to the Arduino.○

Unfortunately, the pin next to enable was ground so shorting the pins together was not an option; fortunately, the pin to its
right is a NO CONNECT pin which we could short to. This allowed us to wedge the wire between the two pins.

○

-

   Log Page 10    



right is a NO CONNECT pin which we could short to. This allowed us to wedge the wire between the two pins.

6/30
~ 5 hours-

Additional motor controller testing to figure out reliability of different wiring techniques (single vs multi -threaded wire, gauge, etc.)-

Designed the chassis bars and chassis connectors, and altered the swerve base plate to fit in via slots.-

3D printing the swerve base plate was not successful, so we CAMed the plates so that we could cut them on the CNC router
Due to the router bit being larger than an M3 hole, we had to increase the size of those holes.○

-

   Log Page 11    



○

7/1
~ 4 hours-

Using the CNC router we cut the base plate for the swerve modules-

We began to assemble the swerve modules, making minor adjustments in CAD when we found issues with tolerances-

   Log Page 12    



7/2
~ 1.5 hours-

Test fit the plate into the corner chassis and found a few issues with the tabs-

Fixed the tabs in CAD and modified the corner mount to have one robust support instead of two-

To Do
Adjust power sliprings-

Fix bar inserts and corner-

7/3
~ 4 hours-

Fixed the base plate tabs and re-routered it-

Fixed the chassis bars and corner sizing-

Other tolerance adjustments to the sliprings and side supports-

Began creating the arm in CAD-

7/5

   Log Page 13    



7/5
~ 5 hours-

Integrated SparkMAX into the slipring assembly. The sliprings were able to power the SparkMAX like normal however the sliprin gs 
would slip or get caught due to the uneven pull created by the spring on the one side

-

Tested the swerve modules turning with the sliprings; it was successful however the belts slipped more often than we preferre d-

The variance created by the 3D printing created tolerance issues in our 3 x 1 bar inserts and the slipring assembly-

In order to find the correct interface for the bar inserts we tested small 3D printed frames to find the correct size that ac counted 
for the 3D printer tolerance

-

Created a insert for the turning 550-

Created a Jig for the Dremel to fix the sliprings-

7/6

~ 7 hours-

Fixed the Dremel holder L-bracket hole by creating an insert that converted the 7mm to 3.5 mm hole-

Rebuilt CAN sliprings and sanded the inconsistencies out of the sliprings using the Dremel holder-

Modified the brushes and supports to have tension bands on both sides. Having it on one side was created inconsistent pressur e 
issues when going one direction over the other

-

Transferred all the wires to the new slipring brushes-

Decided to use Debian Linux on the OrangePi, got VimbaX API working in Anaconda-

Began creating the arm servo joint and bearing and selected the servo
Instead of my previous intention of putting all the weight on the servo we decided to added a bearing that would hold the 
weight for the servo. If all the weight was put on the servo the axle may have broken and the weight may prevent the servo 

○

-

   Log Page 14    



weight for the servo. If all the weight was put on the servo the axle may have broken and the weight may prevent the servo 
from turning.

7/7
~ 7 hours-

Adjusted corner chassis pieces and re-enforced the connecting supports-

Created pin assignments for the Orange Pi and LCD screen-

Remote connected to the Orange Pi via NoMachine-

Worked on debugging Python libraries for the Hosyand LCD TFT with ili9341 chip-

   Log Page 15    



Worked on debugging Python libraries for the Hosyand LCD TFT with ili9341 chip
Had a lot of problems with the spidev library. Turns out that the /dev/spi* permissions have to be manually set○

sudo chmod u+rw /dev/spidev0.0
Referenced: GitHub - sonocotta/ili9341-orangepi-python: Python library to control an ILI9341 TFT LCD display on the Orange 
Pi SBC

○

-

To Do
Figure out why GPIO cannot be set

Possibly a timeout issue?▪

○

-

7/8
~ 8 hours-

Focused on debugging the LCD screen
Used numerous libraries on the OrangePi○

Spent a lot of time attempting to circumvent the gpio/direction permissions○

Found an problem where enabling both chip selects on the Spi0 caused an issues where none of the Spi bus would function 
(pins did not toggle)

○

After fixing the chip select we were finally able to send and receive using the spi. Previously the oscilloscope showed nothing 
on the SCLK, CS and the MISO and MOSI pins were not functioning as normal. After the fix everything was working as 
expected; however the screen was not displaying anything we sent.

○

We found out that we had been using packages for another LCD screen - ili9341 which was similar to the 9488○

After a while we moved to an Arduino Esp8266 and attempted to utilize the Arduino_GFX provided by moononournation: 
GitHub - moononournation/Arduino_GFX: Arduino GFX developing for various color displays and various data bus interfaces

○

Arduino_GFX : 31 Steps (with Pictures) - Instructables○

Moononournation's Arduino_GFX looked promising; unfortunately, we could not get it to work with our setup○

After using various libraries and other packages, and externally powering the LCD we found no success.○

After searching for other solutions a library for the OrangePi created by Adafruit was found○

We installed Armbian on the Pi instead of Debian and going to see if Adafruit's software can be used○

-

7/9
~ 6 hours-

Assembled the second revision of the swerve module-

Began working on a third revision of the swerve module
Fixed some tolerance issues in various places○

Altered the brush stack so they are symmetric and cut the base so that it naturally will lean forward. The intention is that the 
forward force will counter act the force of the sliprings pushing the brushes backwards.

○

The placement of the 550 and the brush stack were changed so that the space was utilized more efficiently○

The cover was redesigned to match the new footprint of the module. The mag encoder will now be a part of the cover 
instead of it being on its own mount connected to the brush stack.

○

-

We decided to move away from the Ili9488 and instead use a Nextion LCD display which uses the UART protocol instead of SPI.
We were able to get it to display a background, a text box and a functioning button.○

-

Swerve Module 
Rev 2

   Log Page 16    

https://github.com/sonocotta/ili9341-orangepi-python
https://github.com/sonocotta/ili9341-orangepi-python
https://github.com/moononournation/Arduino_GFX
https://www.instructables.com/ArduinoGFX/


   Log Page 17    



7/10
~ 6 hours-

Routered out the third revision of the swerve module plate-

Assembled the third revision of the swerve module and began creating the 4th version
Instead of gluing the bearing holder onto the plate we are going to add 6 screws○

The bearing holder was made taller to accommodate the screws○

The cover had to be altered so that there are gaps for the new bearing holder○

-

Found a candidate python library to work with the Nextion screen-

Working on getting Bluetooth to work-

   Log Page 18    



7/11
~ 4 hours-

Working getting a PS4 controller to work with the Orange Pi-

Working on trying to set up another of the motor controller boards to do some more testing with-

7/12
~ 5 hours-

Working on getting the PS4 controller to work with Arduino
Had success once, but we were unable to replicate out success until later○

We found out that the Esp32 had to be scrubbed with the removed paired devices file in the git hub link in order for the 
controller to connect

○

Referenced: 
GitHub - un0038998/PS4Controller_ESP32: This repository contains code and diagram for using PS4Controller with 
esp32

▪

Video: https://www.youtube.com/watch?reload=9&v=dRysvxQfVDw▪

○

-

Set up another motor controller board and tested it
The board ignited at the chip (safe to say it will no longer work)○

-

7/13
~ 5 hours-

Added cross braces to the chassis corners so they do not fold in when put into the bars-

Got the Orange Pi and the Esp32 to communicate with each other via SPI with: GitHub - hideakitai/ESP32SPISlave: SPI Slave library 
for ESP32

-

Swerve Module
Rev 3

After math of testing

   Log Page 19    

https://github.com/un0038998/PS4Controller_ESP32/tree/main
https://github.com/un0038998/PS4Controller_ESP32/tree/main
https://www.youtube.com/watch?reload=9&v=dRysvxQfVDw
https://github.com/hideakitai/ESP32SPISlave
https://github.com/hideakitai/ESP32SPISlave


for ESP32
Initially, the Esp32 kept sending 0, 1, 2, 3 later we found that the tx_buf was being initialized later and was overwriting the 
our data

○

Afterwards messages were received and sent both ways. The messages sent from the Orange Pi have some consistency errors○

that need to be looked into

7/14
~ 3 hours-

Got the Esp32 to take inputs from the ps4 controller and send them over to the Orange through SPI reliably
Have to add 128 on the Arduino side because the SPI library expects a uint_8, but the ps4 function is returning a signed int○

Once sent to the OrangePi 128 should be removed from the transmitted data○

-

Introduction · FRC Swerve Drive Programming (gitbooks.io)-

7/15
~ 1 hour-

Began looking at the motor controller board design and stated making some changes
Increased the size of parts to 0805 if they were smaller○

Pulled the Mosfets together and closer to the DRV8320○

Decreased the overall package size○

-

7/16

Esp 32 sending:
0, 1, 2, 3

Esp 32 after fixing:
Ca, fe, ba, be

   Log Page 20    

https://github.com/hideakitai/ESP32SPISlave
https://github.com/hideakitai/ESP32SPISlave
https://jacobmisirian.gitbooks.io/frc-swerve-drive-programming/content/


7/16
~ 3 hours-

Assembled the chassis in CAD-

Created a mirror version of the case and plate of the swerve modules-

Created a bracket that the top and bottom plate will mount to as well as the 1 x 1 bar-

7/17
~ 5 hours-

Created the Skid plate in CAD and modified the 1 x 1 brackets to attach to the top
Looking potentially into using gussets to attach the top plate to the brackets○

-

Continued board development and finished creating a second revision-

   Log Page 21    



7/18
~ 4 hours-

Worked on chassis and top plate mounting
Decided to design it so there is a mounting gusset that is put onto the base plate and then that is screwed into the chassis○

Created the base plate mounting adapter for our manipulators○

-

   Log Page 22    



7/19
~ 6 hour-

Worked on the arm in CAD
Created the arm to base mount, the base of the arm, the base bearing, and the arm base to arm bar○

Started working on the arm to arm servo joint○

-

7/20
~ 5 hours-

Programming
Got Debian onto the Nvme drive, used the Orange Pi 5 user guide and Orange Pi 5 NVMe/SATA SSD Boot Guide - James A. 
Chambers (jamesachambers.com)

○

Applied all known updates to the OS○

Tested the Esp32 PS4 connection with the Pi○

Created a Git repository for the code○

Started a skeleton of  the code○

Plan to use multiprocessing: https://www.datacamp.com/tutorial/python-multiprocessing-tutorial○

-

Design
Worked on the arm joints○

Designed a 4 part joint to connect the two arms together○

-

   Log Page 23    

https://jamesachambers.com/orange-pi-5-ssd-boot-guide/
https://jamesachambers.com/orange-pi-5-ssd-boot-guide/
https://www.datacamp.com/tutorial/python-multiprocessing-tutorial


   Log Page 24    



7/21
~  7 hours-

Got the Git repository to work-

Moving from Arduino to VS Code-

Worked on creating a framework for the rest of the code
Created set up information that is sent to the ESP32 from the Pi - this includes response curves and error checking on the SPI 
Bus

○

-

7/22
~ 5 hours-

Worked on getting the programming to work-

Had scope issues and linking errors-

   Log Page 25    



Had scope issues and linking errors-

7/23
~ 2 hours-

Attempted to fix the linking errors-

7/24
~ 1.5 hours-

Designed the wrist in CAD-

7/25
~ 3 hours-

Finally resolved the issue of the ESP32 sending 0s on SPI: the tx buffer size needs to be a multiple of 8 bytes-

Fixed the curve coefficient communication handshake-

Implemented the response curve on the ESP32 (complies, not yet tested)-

Started a "Pi Startup" tab in the spreadsheet to describe the Orange Pi interaction with the LCD, ESP32, FPGA, Swerve, and Ar m-

7/26
~ 2 hours-

Started writing the PWM spec document-

7/27
~ 4 hours-

Completed the first revision of the PWM spec-

Installed and debugged the VS code toolchain for the Tang Nano using: Lushay Labs-

Wrote RTL for the PWM and wrote a test bench, and confirmed all the basic operations of the PWM are working as expected-

7/28
~ 3 hours-

Wrote the first revision of the SPI spec-

Wrote RTL for the SPI and wrote a test bench, and confirmed all the basic operations of the SPI is working as expected-

   Log Page 26    

https://learn.lushaylabs.com/


Wrote RTL for the SPI and wrote a test bench, and confirmed all the basic operations of the SPI is working as expected-

7/29
~ 6 hours-

Wrote the first revision of the Address Decoder spec-

Started FPGA Sub-system spec-

Wrote RTL for the Address Decoder -

Identified some updates that need to be applied to the PWM-

7/30
~ 5 hours-

Created test bench for Address Decoder-

Started working on PWM Control and PID spec-

Started thinking about how to implement PID tuning and I2C into the system-

7/31
~ 3 hours-

Started working on PWM Rotation Controller spec-

8/1
~ 2 hours-

Wrote RTL for PWM Rotation Controller-

8/2
~ 2.5 hours-

Finished writing RTL for PWM Rotation Controller and wrote test bench -

8/3
~ 3 hours-

Started writing RTL for pwm_ctrl-

8/5
~ 5 hours-

Designed the first functional grabber for the robot-

Finished writing RTL for pwm_ctrl, and modified Lushay Labs' I2C code (preventing the D latches from being formed; and 
reformatting to our preference)

-

Created the top level file and got the RTL code to build-

8/6
~ 3 hours-

Began working on a new version of the grabber-

8/7 
~ 3 hours-

Finished new version of grabber and updated the arm lengths-

   Log Page 27    



8/9
~ 6 hours-

Worked on creating a logo-

   Log Page 28    



8/10
~ 4 hours-

Worked on animating logo and began ordering more supplies for the robot-

8/11
~ 4 hours-

   Log Page 29    



~ 4 hours-

Finished animating logo with Da Vinci Resolve and began 3D printing a tire-

8/12
~ 2 hours-

Worked on creating the carbon fiber base plate-

-

   Log Page 30    



-

8/13
~ 2 hours-

Worked on the website-

8/14
~ 3 hours-

Worked on the website and pushed the first revision to Github-

8/15
~ 3 hours-

Worked on website-

Started 3D printing and building arm bearings-

Started looking at the voltage regulators for the motherboard-

8/16
~ 2 hours-

Worked on getting parts 3D printed-

8/17
~ 5 hours-

Tested gold paint of the gold 3D printed parts-

Tested the 150kg PWM servo to make sure it works-

Redesigned base mount to make it more robust-

Worked on the motherboard and created the schematic for the first voltage regulator (12V)-

   Log Page 31    



8/18
~ 4 hours-

Worked on motherboard
Finished creating each of the adjustable voltage regulators for 12V, 7.2V, and 5V○

-

   Log Page 32    



○

8/19
~ 5 hours-

Converted the rotation on the swerve modules from belts to gears-

Worked on the motherboard
Connected the LEDs and added the 40 pin header for the Orange Pi○

We are thinking about what to separate from the motor feedback to the Orange Pi and the Tang Nano 9k○

-

Started to print the other 3 swerve modules-

   Log Page 33    



8/20
~ 6 hours-

Worked on the mother board design
Added the Orange Pi, ESP32, ESP32 Cams, and Tang Nano interfaces○

-

Worked on building the arm, and continued to manufacture parts for the other swerve modules-

   Log Page 34    



Worked on building the arm, and continued to manufacture parts for the other swerve modules

8/21
~ 2 hours-

Looked at board design
Looking at connector for the power wires to the boards○

-

8/22
~ 3 hours-

Worked on getting the carbon fiber weave onto the fiberglass bars-

8/23
~ 2 hours-

Worked on DRV8320 to replace the connectors-

   Log Page 35    



8/24
~ 4 hours-

Worked on the Motherboard
Added missing connectors and assigned all the Tang Nano 9k pins○

Reoptimized the position of all the parts○

-

   Log Page 36    



   Log Page 37    



8/25
~ 4 hours-

Worked on routing the motherboard wires-

8/26
~ 3 hours-

   Log Page 38    



~ 3 hours-

Finished routing the Motherboard-

8/30
~ 2 hours-

Worked on refining the website by updating images and links-

Fixed the skid plate in CAD-

8/31
~ 5 hours-

Sanded down the carbon fiber bars and cut them to length
Did some impact testing to see what structural failure looked like○

-

Fixed spacing between the Tang Nano and the ESP 32
Had to re-route the Tang Nano and moved the left connectors up to use our space more efficiently○

-

   Log Page 39    



   Log Page 40    



9/3
~ 3 hours-

Worked on finishing the carbon fiber bars and top plate-

Worked on the website and my resume-

9/4
~ 1.5 hours-

Fixed Website video link-

Fixed some minor issues with the swerve modules-

9/5
~ 2 hours-

Fixed some problems in CAD and assembled some of the rev 3 swerve module-

9/7
~ 1.5 hours-

Attempting to fix low areas in carbon fiber by adding more epoxy-

Assembled sliprings-

9/8
~ 4 hours-

Assembling sliprings and bearings-

Added clear coat to carbon fiber bars-

9/14
~ 5 hours-

Started drilling holes in the carbon bars, so we can assemble the chassis-

Buffed the top plate of the carbon-

Wrote the first revision of the motor controller report-

Added motor controller report to website and removed useless buttons-

9/15
~ 3 hours-

Assembled the chassis
Noticed the bar inserts flexed a little because the outer profile did not match the inner profile of the bar. Using the router we 
cleared out the area so the swerve modules would fit

○

One of the swerve plates broke at one of the bearing holes. If I were to re-make it I would remove that hole or add more 
material

○

-

   Log Page 41    



material
Started building rims of the swerve modules-

   Log Page 42    



   Log Page 43    



9/16
~ 1.5 hours-

Put tires on rims,  assembled planetary gear systems, and ran into an issue with the motor side support
The rim seemed to have a taper that was only present in the physical form - likely due to the 3D printer○

The side support was adjusted to be stronger and was given slots to increase our tolerances○

-

9/17
~ 1 hour-

Tested new motor side support, but ran into an issue where the planetary side holes did not match up anymore
This was caused by increasing the width of the side support. The hole was referred off of the exterior of the side support 
rather than the distance apart from each other.

○

-

   Log Page 44    



rather than the distance apart from each other.

9/21
~ 4 hours-

Build more of the swerve modules
Attached wheel supports and connected wheels to bearings○

The sliprings and their brushes were finished○

-

   Log Page 45    



9/23
~ 1.5 hours-

Connected wires to brushes and sanded down high points of sliprings-

9/24
~ 2 hours-

Glued the sliprings to the swerve-

Fixed some problems with parts not fitting in CAD
The axle was too large, and the lower 550 support was angled 45 degrees off○

-

9/26
~ 1 hour-

Found some more problems with the swerve modules
The space between the rotation NEO 550's bolts and the gear was not enough. To fix this I added a recess into the 550 
mounting plate, which should create enough space between the two components

○

Found the spacing between the sliprings and the brushes do not match due to the increase in width of the power sliprings. To 
address this I created spacers that are 1mm and .5mm in depth. Together I can create spaces with the factor of .5, if we need
more granularity sanding may be used or additional spacers may be created

○

-

9/28
~ 4 hours-

Continued assembling swerve modules
Finished getting the brushes attached○

Connected all the gears○

Starting to print the covers○

-

9/29
~6 hours-

Adjusted the cover top support to a chamfer instead of filet due to support issues-

Printed 3 out of the 4 covers-

Cut the aluminum bars down to length-

   Log Page 46    



Cut the aluminum bars down to length-

Redesigned the bar mount-

Reviewed the motor controller schematic and board
Updated the report and added logo○

-

Updated the website with the GitHub link-

Started looking at the AS5600 and got it to work using Arduino-

   Log Page 47    



9/30
~ 2 hours-

Working on getting the I2C code to work on the Tang
Looking at the oscilloscope and simulations○

The issue likely stems from Lushay Labs I2C code fundamentally or the stimulus that we us to activate the I2C code from 
Lushay Labs.

○

-

----------------------------------------------------------------------------     10/1 -10/11     ----------------------------------------------------------------------------------
Worked on Swerve modules

Finished getting swerve modules fabricated and constructed
Creating brushes▪

Getting brushes to align with sliprings▪

○

Created new version of cover with an acrylic top because the 3D printed top had many inconsistencies○

Created an initial cover that protects hands from the top carbon plate edges○

-

   Log Page 48    



   Log Page 49    



10/12
7 hours-

Base Plate
Cut the carbon plate to exact size○

Refined the covers for the carbon plate edges○

-

Arm
We lost the initial program to create PWM for the servos, so a new program had to written○

With this we could take our keyboard inputs to set a PWM value○

Used this to determine the range which the servos operated within

Center Arm Servo 75 (Closed), 25 (Extended)

Base Servo 20 (Fully Backward), 70 (Fully Forward)

Grabber 80 (Closed), 50 (Open)

Wrist TBD

▪

○

Assembled the arm for scale○

-

   Log Page 50    



10/13
~ 4 hours-

Worked on the motherboard
Added a jumper to change the drive wire's adjacent to 5V or GND○

-

Started looking at electrical component placing on the robot
Made a battery case ○

Started working on a case for the mother board○

-

   Log Page 51    



○

10/20
~ 4 hours-

Worked on the case for the motherboard and breaker
The first image shows the cutout for the breaker and its wire routes○

The second image shows the top which has indents for the motherboard solder joints○

-

   Log Page 52    



10/21
~ .5 hour-

Optimized the motherboard wires-

10/24
~ 1 hours-

Looked at motor controller boards, and added status LEDs for: Brake, PWM, and Enable-

   Log Page 53    



Looked at motor controller boards, and added status LEDs for: Brake, PWM, and Enable

10/25
~ 2 hours-

Adjusted the resistor and Zener diode values for the LEDs on both the Motherboard and Motor controllers-

10/26
~ 6 hours-

Worked on  I2C communication for the AS5600
Updated the FSM○

Looked into documentation about repeated starts, nacks and acks for the I2C bus○

Updated the I2C section of the PWM Control MAS○

-

10/27
~ 5 hours-

Worked on  I2C communication for the AS5600, and finally got the AS5600 to communicate with the Tang
Re-updated the FSM○

Updated the I2C section of the PWM Control MAS○

-

11/1
~ 2 hours-

Added 3.3V to the motherboard for the magnet encoders (AS5600)-

Created BOM and CPL file for the motor controller V2-

11/2
~ 7 hours-

Completely reworked the connections from the NMOS to the motor outputs (old on the left shows the imbalance of paths to VM vs
GND)

-

Decided to do 3 individual sense resistors-

Moved LEDs all to the left-

Updated BOM and Pick-n-place-

Started Motherboard BOMs-

   Log Page 54    



11/3
~ 4 hours-

Created BOM and CPL files for the motherboard-

Used JLCPCB DFM to check for problems in our boards-

11/4
~ 3 hours-

Looked over the motherboard and motor controller PCBs to check for any problems-

Had to fix the ultra-librarian file for the USB C connector because the slots were registered as holes
Using the PTH pad feature I overlayed the slots○

-

   Log Page 55    



11/5
~ 3 hours-

Created a ESP8266 board when combined with our motor controller board can replace the SparkMax-

Sent orders out to JLPCB-

11/7
~ 3 hours-

Fixed the JLCPCB board and re-sent them out to order-

11/8
~ 2 hours-

Created a housing for all the arm connections-

   Log Page 56    



11/9
~ 4 hours-

Wrote Verilog code for UART-

Created a MAS for the UART communication-

Found out that the waves on the HDMI capable pins of Tang Nano were worse than the other pins due to their capacitors.-

11/10
~ 6 hours-

Debugging UART communication to the Arduino
Found that a clock division code of 110-120 was "stable" (outside of this, start to see occasional errors), so picked 116○

-

Created PDP mount, updated the motherboard mount-

   Log Page 57    



   Log Page 58    



11/11
~ 3 hours-

Made some modifications to the PDP, Motherboard and Battery mounts
Added an extension to the "wings" that goes over to the other side of the bar. A bolt will travel through the outer part of the 
"wing" through the bar and screw into the main body of the mount.

○

-

Updated diagrams in the motor controller MAS document-

11/12
~ 2 hours-

Tested the SPI on the Orange Pi
Got the Pi to send "DEAD BEEF"○

Found that there is no set limit on the amount of bits sent in the Conda environment○

-

Started to plan the registers for the Tang Nano-

11/14
OrangePi's Debian somehow got corrupted: the spidev in Python wouldn't work, and when loading the OrangePi Configuration - all 
the ports were just marked [] (instead of having a label next to the []) . Was luckily able to "fix" it by copying the 
/boot/orangepiEnv.txt from the boot SD card, and deleting the /boot/config -6.1.43-rockchip-rk3588 file. On restart, Debian seems 
to have created a new version of this file, which is working!

-

Diagram of Tang Nano function-

   Log Page 59    



Diagram of Tang Nano function

----------------------------------------------------------------------------------------------------------------------------- -------------------------------------------------
---------------------------------------------------------------------    400 hours to this point! -----------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------- -------------------------------------------------

11/16
~ 2 hours-

Worked on writing the register file-

11/17
Working on register file-

11/18 & 19
~ 3 hours-

Got SPI working with the addition of the MISO pin and the new data framing-

Working on creating the top level file-

11/21
~ 2.5 hours-

JLCPCB boards have arrived-

Soldered pin headers onto the boards-

Power up test on the Motherboard with the ESP, Tang, and Pi-

   Log Page 60    



   Log Page 61    



11/22
~2.5 hours-

Worked on assembling the electrical covers for the robot
Had to make a spacer for the motherboard because the mounting points were not changed with the other alterations for the  
raised Power Distribution Panel

○

-

11/23
~ 8 hours-

Worked on the central main connector -

Tested motor controller
The electrolytic cap on the first exploded after plugging the U and W phases into opposite sides○

The second board worked as we had hoped○

-

   Log Page 62    



○

   Log Page 63    



11/24
~ 5 hours-

Tested the subsystem UART option for driving the DRV8320
Orange Pi -> Motherboard -> Tang Nano -> ESP32 (UART) -> Motor Controller -> Motor○

Got the motor to alternate between spinning faster and slower○

-

11/26
~ 5 hours-

Working on the subsystem I2C from the AS5600 to the Tang and ultimately the Orange Pi-

11/27
~ 4 hours-

Got the I2C from the Tang to work with the AS5600 and got the Tang to relay the raw angle information to the Orange Pi-

12/5
~ 3 hours-

Working on the motor rotation code-

12/9
~ 2 hours-

Tested the rotation motor controllers-

The Mosfet failed as seen the photo below
Unsure of the cause currently○

-

   Log Page 64    



○

-

12/16
~ 2 hours-

Working on the rotation motor functionality-

Revisions made after Mosfet failure
Added a hammer feature - a sequence of short bursts of energy - to unstick the motor○

Installed a motor stall monitor to prevent future damage○

-

12/20
~ 2 hours-

Working on the rotation motor functionality-

Opened SparkMAX and analyzed the BLDC motor phases to find discrepancies between our boards and theirs
Rev uses 6 100uF capacitors while we use 1 100uF capacitor for filtering○

-

After looking at Ti documentation it appears that the Idrive setting needs to be 18k to GND instead of VCC-

12/21
~ 4 hours-

Fixed motor controller boards
Moved Idrive resistor from VCC to GND○

Added 1 1000uF capacitor to the drive boards; added 2 470uF capacitors to the rotation boards○

-

Created a case for the rotation motor controllers-

   Log Page 65    



Drive Motor Controller

Rotation Motor Controller

   Log Page 66    



12/22
~ 3 hours-

Made rev2 of the motor controller case-

Made a case for the LCD-

Updated the main assembly-

   Log Page 67    



12/23 
~ 2 hours

Looking into motor controller-
Our Motor Controller
No load
PWM set to 25 (out of 255)
With the new capacitors added

   Log Page 68    



Our Motor Controller
No load
PWM set to 25 (out of 255)
With the new capacitors added

Our Motor Controller
With load & Stalled
PWM set to 25 (out of 255)
With the new capacitors added

No load
PWM set to 25 (out of 255)
With the new capacitors added

   Log Page 69    



With the new capacitors added

Commercial Motor Controller
No Load
PWM set to 10%

Commercial Motor Controller
With load & Stalled
PWM set to 10%

   Log Page 70    



12/26
~ 6 hours-

Created a control register for the acceleration profiles to determine if one profile yields higher startup success-

Test 1 is our initial profile based on a poly-numeric convex function-

Test 2 and 4 are variations of an S-curve-

Test 3 is similar to a step function having 3 distinct levels: Base, Mid, and High-

12/27
~ 5 hours-

Added 2 more tests for the swerve-

Startup on the rotation remained inconsistent, so we tried the tests on the drive motor-

Unfortunately the drive motor did not work - the lower mosfet giving out during our testing-

12/28
~ 3 hours-

Moving over to the arm servos
Wrote initial code for controlling servos including their offset bound limits○

-

12/29
~ 6 hours-

Updated GUI-

Created wires for the arm, and created the wire for the Orange Pi-

Arm Signal Wire Colors: Grabber - Blue;    Wrist - Green;    Center and Base - White-

Central Connector Pinout-

GND 7.2V Wrist GND 7.2V Grabber

GND 12V Base GND 12V Center
-

Tuned the ranges (slamming into the table a few times)-

   Log Page 71    



12/30
~ 2.5 hours-

Created an acceleration profile for the servos to ensure smooth movement from the initial position to the target position-

12/31
~ 5 hours-

Fixed the servo control code and tuned the acceleration profile for the servos-

------------------------------------------------------------------     FRC Competition Season    ------------------------------------------------------------------

3/29
~ 3 hours-

Connected SparkMAX controllers to the rotation motors on all four swerve modules-

Created and connected wires for swerve rotation magnet encoders-

4/3 
~ 1.5 hours-

Testing SparkMAX control through FPGA PWM signal
When no load is present the motor spins controllably at the expected speeds○

Under any load (friction of the swerve rotation) the motor spins uncontrollably. This may be due to the FPGA remaining in the
acceleration state, which causes the motor to speed up until it reaches its maximum speed.

○

-

4/6
~4 hours-

Working on swerve rotation with the SparkMAXs-

4/11
2 hours-

Got motor rotation functionality, but the overshoot was very bad, approx 400 / 4096 or 35 degrees from the intended target-

4/13
4 hours-

Started implementing a trapezoidal PID tuning-

4/14
Started to integrate PID into the subsystem

Starting to update register file○

-

4/17
Tested PID tuning-

PID control loop is working, however the module is overshooting the intended angle-

4/19
Implemented code to manually control the pwm value to the swerve, so we can plot the resistance profile of each module-

4/20
Resistance profiles:-

At 10:-

   Log Page 72    



At 10:

At 15 (3 distinct speeds):

   Log Page 73    



If the line was equal to y = x that would indicate a consistent resistance, however as seen above there are two distinct "zon es" were 
the resistance is higher. Note that as the speed increases more noise is introduced.

By applying a "boost" coefficient to the PWM ratio at the higher resistance zones, we hope to smooth out the curve by applyin g 
additional power. This should make the curve more linear which effectively, increases our tuning capabilities with the PID co ntrol 
system. Note: due to the non-linearity of the current system, tuning the derivative and integral value for all instances is generally 
ineffective; hence the need for the "boost" coefficient to establish general linearity.

The "boost" coefficient is calculated based on the difference between the highest magnitude Angle Rate of Change and the Angl e 
Rate of Change at index n. Essentially we are calculating the Angle Rate of Change error between the higher resistance zones and 
the least resistant zones to determine the magnitude of the "boost". 

4/22
Unfortunately the boost coefficient, while theoretically effective only increased the variance of the modules. -

Started to increase the power value and reintroduced the derivative term to help.-

At the moment we see the module get stuck before reaching the target angle, to address this we may increase the p -value or 
altering the control profile to reduce the reduction in speed when in the DECEL state.

-

4/23
Connected the Orange Pi to the new ESP32 Dev kit board. The ESP connects to the Orange Pi via the VSPI ports. -

Reconnected PS4 controller and tested inputs, data seems to be transferring correctly, but something with the controller dead zone 
profile is not working

-

4/24
Looking into Nextion user interface to display status messages on the robot-

4/25
Planning overall UI interface-

Looking into PyQt since Nextion designer interface is difficult to work with-

PyQt also works with a larger monitor instead of the small Nextion Screen-

-

   Log Page 74    



-

4/26
Worked on PyQt Interface-

-

4/27
Connected all the swerve modules on Onyx-

-

   Log Page 75    



4/28
Worked on the Ui interface-

4/29
Named elements in the PyQt ui-

Started to work on the top level reg file-

4/30
Condensed the register and top files-

Reinstated the remaining swerve modules to the top file
Added the swerve drive modules to the top file○

-

5/1
Working getting the swerve modules to work-

5/2
Fixed swerve enable registers -

Moved position of swerve rotation connections
Note: when the FPGA runs the placing software there is some variability, causing us to repeatably run the placer until it 
successfully finds a routing solution

○

-

Got most swerve motors working
Top left swerve rotation's pinion is disconnected from the gear○

Top right rotation's PDP pins or breaker is faulty○

-

5/3
Worked on GUI functionality-

   Log Page 76    



Worked on GUI functionality
Motor controls works for each module, the e-stop button has been connected and PS4 inputs are properly displayed○

-

   Log Page 77    


